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Preface

The III International Castle Meeting on Coding Theory and Applications has been held at
Cardona Castle in Catalonia (Spain) on September 11-15, 2011. It was organized by the
research group CCSG (Combinatorics, Coding and Security Group) from the Universitat
Autònoma de Barcelona. The main objectives of the conference were the communication
of scientific and technological results, the cooperation among research groups at an interna-
tional level, and the promotion of young pre-doc and post-doc researchers on the topics of
the conference.

The present Proceedings contain the extended abstracts of 4 invited talks and 43 com-
munications. The previous review process assures the high quality of these works. It is re-
markable the international character of the conference, since there were participants, invited
speakers, steering committee, organizing committee, scientific committee and local commit-
tee members from 22 different countries.

The organizing committee thanks to all for their contribution, specifically, to the steering
and scientific committees, as well as to the people out of these committees helping in the
reviewing process, to the 4 invited speakers and to all the participants. Also, the conference
has been possible thanks to the financial support of the following institutions: IEEE Informa-
tion Theory Society, Spanish Ministry of Science and Innovation, Catalan Research Agency
AGAUR, and Universitat Autònoma de Barcelona.

We are also grateful with the journal Designs, Codes and Cryptography for accepting to
publish a full version of the more excellent papers presented at the conference.

September 2011 Joaquim Borges
Mercè Villanueva

Co-chairs of the Scientific Committee
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Managing Interference

Robert Calderbank

calderbk@math.princeton.edu

Duke University, USA

1 Extended abstract

We consider a framework for full-duplex communication in ad-hoc wireless networks re-
cently proposed by Dongning Guo. An individual node in the wireless network either trans-
mits or it listens to transmissions from other nodes but it cannot to both at the same time.
There might be as many nodes as there are 48 bit MAC addresses but we assume that only
a small subset of nodes contribute to the superposition received at any given node in the
network.

We use ideas from compressed sensing to show that simultaneous communication is pos-
sible across the entire network. Our approach is to manage interference through configuration
rather than to eliminate or align it through extensive exchange of fine-grained Channel State
Information. Our approach to configuration makes use of old fashioned coding theory.
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Error-correcting Codes in the Projective Space?

Tuvi Etzion

etzion@cs.technion.ac.il

Technion — Israel Institute of Technology, Israel

1 Extended abstract

Let Fq be the finite field of order q, and letW be an arbitrary (fixed) vector space of dimension
n over Fq . SinceW is isomorphic to Fnq , we can assume thatW is in fact Fnq . The projective
space of order n over Fq , denoted herein by Pq(n), is the set of all the subspaces of Fnq ,
including {0} and Fnq itself. Given a nonnegative integer k ≤ n, the set of all subspaces of
Fnq that have dimension k is known as a Grassmannian, and usually denoted by Gq(n, k).
Thus Pq(n) = ∪0≤k≤nGq(n, k). It is well known that

|Gq(n, k)| =
[
n
k

]
q

def
=

(qn − 1)(qn−1 − 1) · · · (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)

where
[
n
k

]
q

is the q-ary Gaussian coefficient. It turns out that the natural measure of distance,

the subspace distance in Pq(n), is given by

dS(X,Y )
def
= dim(X) + dim(Y )− 2 dim(X ∩ Y )

for all X,Y ∈ Pq(n). It is well known (cf. [1,2]) that the function above is a metric; thus
both Pq(n) and Gq(n, k) can be regarded as metric spaces. Given a metric space, one can
define codes. We say that C ⊆ Pq(n) is an (n,M, d) code in projective space if |C| = M
and dS(X,Y ) ≥ d for all X,Y ∈ C. If an (n,M, d) code C is contained in Gq(n, k) for
some k, we say that C is an (n,M, d, k) code. An (n,M, d, k) code is also called a constant
dimension code.

The (n,M, d), respectively (n,M, d, k), codes in projective space are akin to the familiar
codes in the Hamming space, respectively (constant weight) codes in the Johnson space,
where the Hamming distance serves as the metric. There are, however, important differences.
For all q, n and k, the metric space Gq(n, k) corresponds to a distance-regular graph, similar
? This research was supported in part by the United States — Israel Binational Science Foundation

(BSF), Jerusalem, Israel, under Grant 2006097.
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Finally, some more results, new related references, and a list of open problems for further
research are given.
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On Old and New Results in Algebraic Coding
Theory over Ring Alphabets

Marcus Greferath

marcus.greferath@ucd.ie

University College Dublin, Ireland

1 Extended abstract

Ring-linear algebraic coding theory gained importance during the last decade of the previous
century, when it was discovered that certain non-linear binary codes of high quality can be
better understood as linear codes over the ring of integers modulo 4.

Since then, a number of workgroups worldwide have been doing research in this new
discipline of Applicable Algebra. Their results suggest that most of the foundational questions
of algebraic coding over rings have been settled by now, whereas strong examples of record-
breaking codes are still in demand.

This talk gives some insight into this amazingly beautiful chapter of Discrete Mathema-
tics. We will report on a collection of results from the literature and from our own previous
and current research. The talk will finish with open problems and projects for future research.
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Codes from Incidence Matrices of Graphs

Jennifer D. Key

keyj@clemson.edu

University of the Western Cape, South Africa

1 Introduction

An incidence matrix for an undirected graph Γ = (V,E) is a |V | × |E| matrix G = [gX,e]
with rows labelled by the vertices X ∈ V and columns by the edges e ∈ E, where gX,e = 1
if X ∈ e, gX,e = 0 if X 6∈ e.

For any prime p let Cp(G) denote the row span ofG over Fp from a graph Γ . In a number
of recent papers, for example [5,4,7,12,13], the codes Cp(G) for some classes of regular
connected graphs were studied. It was found that for these classes the codes have parameters

[|E|, |V | − εp, δ(Γ )]p

where ε2 = 1, εp = 0, 1 for p odd, δ(Γ ) is the minimum degree of Γ , and the words of
minimum weight are precisely the non-zero scalar multiples of the rows ofG of weight δ(Γ ).
In particular when Γ is k-regular and so δ(Γ ) = k, this implies that in these cases the graph
can be retrieved from the code. Furthermore, in some of the classes, these properties led to
similar facts for the binary codes of the adjacency matrices of the associated line graphs,
these being subcodes of the binary codes from the incidence matrices of the original graphs.
Indeed, it was a study of the codes from the adjacency matrices of triangular graphs in [11]
that pointed to this focus on the incidence matrices.

In addition, it was noticed that the weight enumerator of the code of the incidence matrix
had, in all cases studied, a gap between the weight k for the valency, and 2k − 2 for the
difference of two rows, i.e. the valency of the line graph. This then immediately shows that,
in these cases, the binary code of an adjacency matrix of the line graph of a graph Γ has the
property that the minimum weight is either the valency of Γ or the valency of the line graph;
in the latter case, that the words of that weight are the rows of the adjacency matrix might not
necessarily follow, but does in fact seem to be true in most of the classes studied.

The question was thus asked whether these properties are in fact general for graphs sat-
isfying certain conditions. We make a start at answering this question here by using the con-
cept of edge-connectivity to show that this is indeed the case for many classes of graphs. We
outline this method and some of the results obtained in Section 3, but first we mention, in
Section 2 below, the classes studied that led to this observation.
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2 Classes of graphs studied previously

Infinite classes of graphs studied and found, by combinatorial and coding theoretic methods,
along with induction, to have the properties described for Cp(G), G an incidence matrix,
include:

– Hamming graphs Hk(n,m) (see [5,4])
The Hamming graph Hk(n,m), for n, k,m integers, 1 ≤ k < n, is the graph with
vertices themn n-tuples ofRn, whereR is a set of sizem, and adjacency defined by two
n-tuples being adjacent if they differ in k coordinate positions. They are the graphs from
the Hamming association scheme. In particular, the n-cube: Qn = H(n, 2) = H1(n, 2)
(R = F2).

– Uniform subset graphs Γ (n, k,m)

A uniform subset graph Γ (n, k,m) has vertex set Ω{k}, where |Ω| = n, and adjacency
defined by a ∼ b if |a ∩ b| = m. The symmetric group Sn always acts on these graphs.
All classes studied satisfy the properties described, and include:

• the odd graphs Γ (2k + 1, k, 0) (see [2])
• triangular graphs Γ (n, 2, 1) (strongly regular) and Γ (n, 2, 0) (see [6])
• Γ (n, 3,m) for m = 0, 1, 2. (see [3])

– Complete multipartite graphs Kn1,n2,...,nk

• Kn the complete graph (see [12])
• Kn,n the complete bipartite graph (see [13,14])
• Kn,m for n 6= m

• Kn1,n2,...,nk where ni = n for i = 1, . . . , k

– Strongly regular graphs (n, k, λ, µ)

A k-regular graph Γ = (V,E) with |V | = n is strongly regular with parameters (n, k, λ,
µ) if

• for any P,Q ∈ V such that P ∼ Q, |{R ∈ V | R ∼ P &R ∼ Q}| = λ, and
• for any P,Q ∈ V such that P 6∼ Q, |{R ∈ V | R ∼ P &R ∼ Q}| = µ.

The classes found to have the described property include:

• Triangular graphs T (n) = L(Kn), (line graph of the complete graph, also a uniform
subset graph), n ≥ 4, (

(
n
2

)
, 2(n− 2), n− 2, 4) (see [12])

• Paley graphs P (q), vertex set Fq where q ≡ 1 (mod 4) and x ∼ y if x − y is a
non-zero square, (q, q−12 , q−54 , q−14 ) (see [7])

• Lattice graphs L2(n) = L(Kn,n), the line graph of the complete bipartite graph,
(n2, 2(n− 1), n− 2, 2) (see [14])

• Symplectic graphs (see [10]):
Γ2m(q) with parameters ( q

2m−1
q−1 , q

2m−1−1
q−1 − 1, q

2m−2−1
q−1 − 2, q

2m−2−1
q−1 )

and complement
Γ c2m(q) with parameters ( q

2m−1
q−1 , q2m−1, q2m−2(q − 1), q2m−2(q − 1))

where m ≥ 2, q a prime power.




